Search results for " Calabi-Yau"
showing 5 items of 5 documents
New fourfolds from F-theory
2015
In this paper, we apply Borcea-Voisin's construction and give new examples of fourfolds containing a del Pezzo surface of degree six, which admit an elliptic fibration on a smooth threefold. Some of these fourfolds are Calabi-Yau varieties, which are relevant for the $N=1$ compactification of Type IIB string theory known as $F$-Theory. As a by-product, we provide a new example of a Calabi--Yau threefold with Hodge numbers $h^{1,1}=h^{2,1}=10$.
Groups acting freely on Calabi-Yau threefolds embedded in a product of del Pezzo surfaces
2011
In this paper, we investigate quotients of Calabi-Yau manifolds $Y$ embedded in Fano varieties $X$, which are products of two del Pezzo surfaces — with respect to groups $G$ that act freely on $Y$. In particular, we revisit some known examples and we obtain some new Calabi-Yau varieties with small Hodge numbers. The groups $G$ are subgroups of the automorphism groups of $X$, which is described in terms of the automorphism group of the two del Pezzo surfaces.
A closer look at mirrors and quotients of Calabi-Yau threefolds
2016
Let X be the toric variety (P1)4 associated with its four-dimensional polytope 1. Denote by X˜ the resolution of the singular Fano variety Xo associated with the dual polytope 1o. Generically, anticanonical sections Y of X and anticanonical sections Y˜ of X˜ are mirror partners in the sense of Batyrev. Our main result is the following: the Hodge-theoretic mirror of the quotient Z associated to a maximal admissible pair (Y, G) in X is not a quotient Z˜ associated to an admissible pair in X˜ . Nevertheless, it is possible to construct a mirror orbifold for Z by means of a quotient of a suitable Y˜. Its crepant resolution is a Calabi-Yau threefold with Hodge numbers (8, 4). Instead, if we star…
Deformations of Calabi-Yau manifolds in Fano toric varieties
2020
In this article, we investigate deformations of a Calabi-Yau manifold $Z$ in a toric variety $F$, possibly not smooth. In particular, we prove that the forgetful morphism from the Hilbert functor $H^F_Z$ of infinitesimal deformations of $Z$ in $F$ to the functor of infinitesimal deformations of $Z$ is smooth. This implies the smoothness of $H^F_Z $ at the corresponding point in the Hilbert scheme. Moreover, we give some examples and include some computations on the Hodge numbers of Calabi-Yau manifolds in Fano toric varieties.
An unbounded family of log Calabi–Yau pairs
2016
We give an explicit example of log Calabi-Yau pairs that are log canonical and have a linearly decreasing Euler characteristic. This is constructed in terms of a degree two covering of a sequence of blow ups of three dimensional projective bundles over the Segre-Hirzebruch surfaces ${\mathbb F}_n$ for every positive integer $n$ big enough.